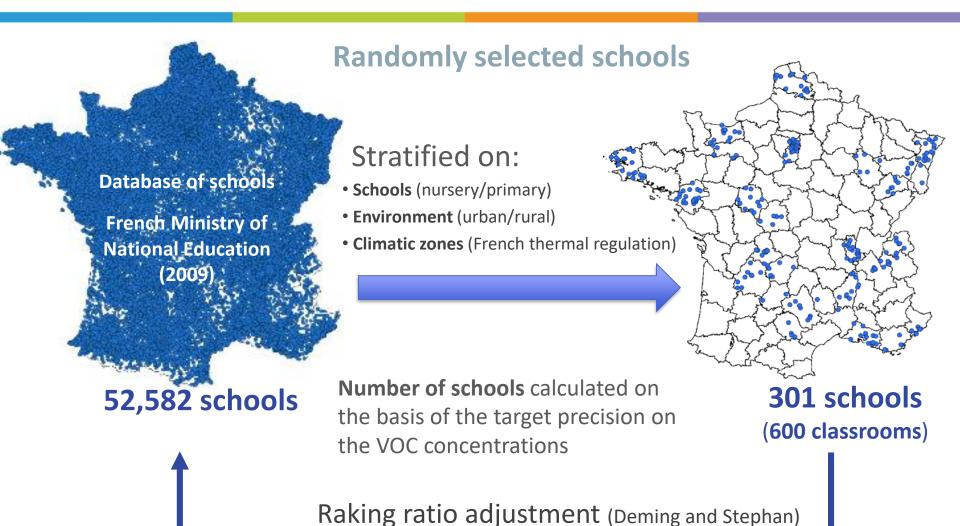


Indoor air quality in French schools: a nationwide survey (2013-2017)

<u>Claire Dassonville</u>, Anthony Gregoire, Sivanantham Sutharsini, Bruno Berthineau, Mickael Derbez, Olivier Ramalho, Jacques Riberon, Corinne Mandin

University of Paris Est / Scientific and Technical Building Centre (CSTB) / French Observatory of Indoor Air Quality (OQAI)



Background and objective

- IAQ Observatory: created in 2001
- Objective: To coordinate and develop indoor air research activities at a national scale
 - To improve knowledge on IAQ in buildings
 - To provide support for public policies
 - To publish recommendations for professionals and general public
- School survey started in 2013 to describe indoor environment in a sample of schools representative of the French stock (≈ 52,000)

Sampling design

Parameters (1)

One week: from Monday to Friday

On-line measurements

- ⇒ Carbon dioxide (CO₂)
- □ Temperature and relative humidity
- ⇒ Particle counting (0,3 to 20 μm)
- ⇒ Noise level (7 days, starting the Friday before the monitoring week)

Air samples

- ⇒ With pumps: PM_{2,5} and SVOCs
- **⇒** With passive samplers:
 - VOCs and aldehydes
 - Nitrogen dioxide (NO₂)

Parameters (2)

Dust sampling

- ⇒ With a wipe for lead
- ⇒ With a specific vacuum cleaner: metals and SVOCs

Punctual measurements

- ⇒ Illuminance on tables and boards (illuminance meter)
- ⇒ Lead in paint by X-Ray fluorescence
- ⇒ Electromagnetic fields

Questionnaires

- ⇒ Description of the classrooms and the buildings
- □ Description of classroom activities
- ⇒ Teachers' and children's perception (noise, light, thermal comfort)

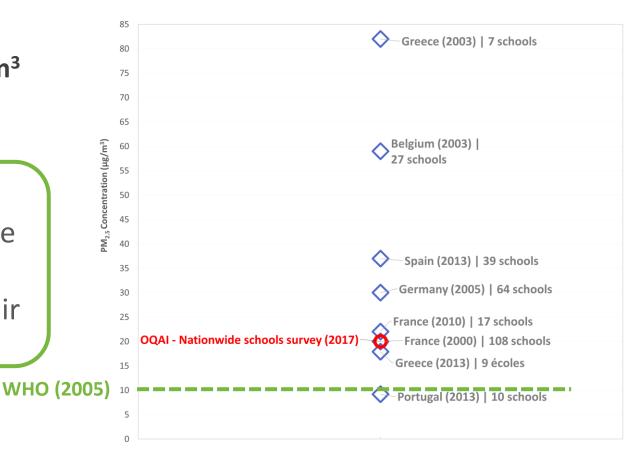
Results at a glance

Positive aspects

- Low NO₂ concentrations
- Lower VOC concentrations compared to dwellings

Critical issues

- PM_{2,5}
- Semi-volatile organic compounds
- Lack of ventilation, air stuffiness
- Lead in paint



Particles PM_{2.5}

Median = $18 \mu g/m^3$

Mean (SD) = $20 \pm 1 \, \mu g/m^3$

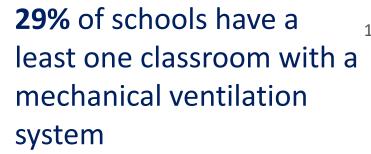
96% of schools > 10 μg/m³, WHO guideline value for outdoor air applicable to indoor air (WHO AQGs, 2005)

Mean concentrations of PM_{2.5} measured in European schools since 2010

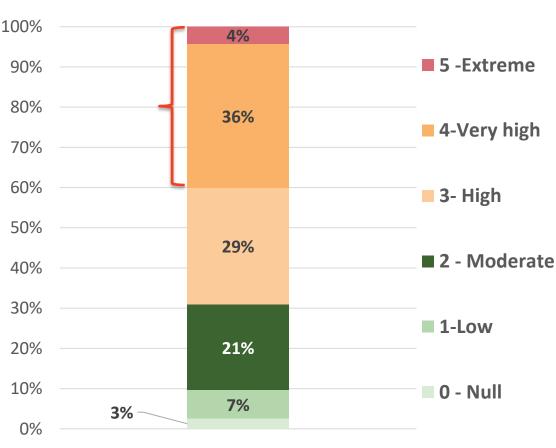
46 target SVOCs

(gas and particulate phases)

- 16 pesticides: organochlorine, organophosphorous, pyrethroids
- 2 synthetic musks (AHTN, HHCB)
- 7 polycyclic aromatic hydrocarbons (PAHs)
- 9 polychlorobiphenyls (PCBs)
- 6 phthalates
- 6 brominated flame retardants (PBDEs)


SVOCs	% > LOD	Median ng/m³
4,4'-DDT	15%	<lod< td=""></lod<>
α–НСН	94%	0,2
δ-HCH (lindane)	100%	1,4
lpha-endosulphan	63%	<loq< td=""></loq<>
Chlorpyriphos-éthyl	46%	<lod< td=""></lod<>
Permethrin	6%	<lod< td=""></lod<>
Tributylphosphate	96%	3,8
Acenaphtene	100%	1,9
Benzo[a]pyrene	45%	<lod< td=""></lod<>
Fluoranthene	100%	0,7
Fluorene	100%	7,5
Phenanthrene	100%	11,6
НССВ	100%	148
AHTN	100%	21,1
DBP	99%	168
DEHP	6%	<lod< td=""></lod<>
DiBP	100%	790
DINP	43%	<lod< td=""></lod<>
PCB 31	88%	0,1
PCB 52	97%	0,2
PCB 180	3%	<lod< td=""></lod<>
BDE 47	7%	<lod< td=""></lod<>
BDE 153	0%	<lod< td=""></lod<>

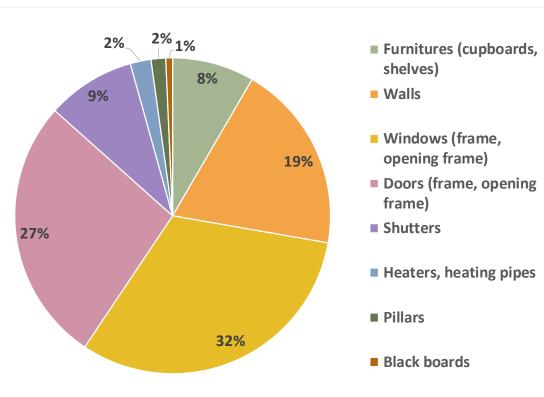
Ventilation – Air exchange


Air stuffiness index (ICONE)

(Canha et al, Indoor Air, 2016)

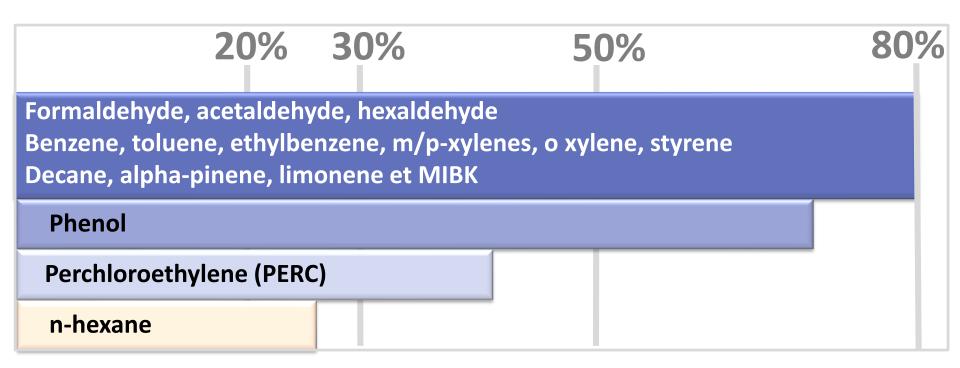
Windows are not regularly open

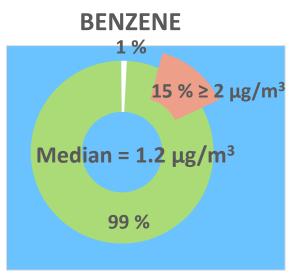
40% of schools have at least one classroom with a very high ICONE index (≥ 4)


Highest value per school among the instrumented classrooms

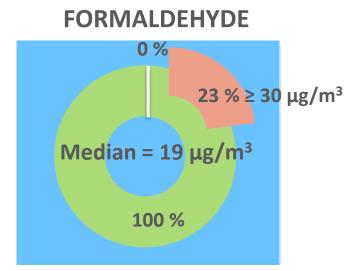
Lead in paint

15% of schools have at least one classroom with deteriorated paint containing more than 1 mg/cm² of lead

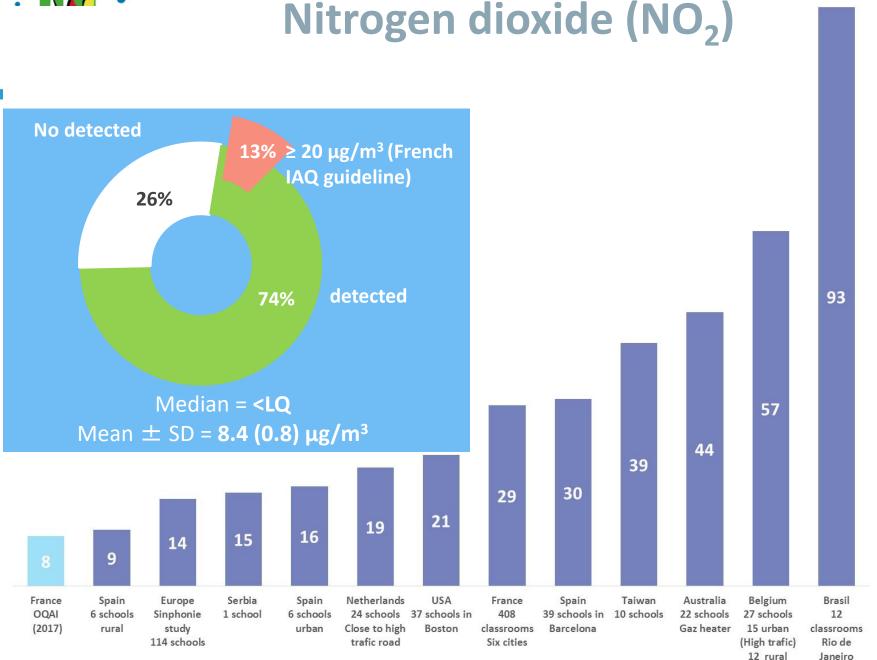



Volatile organic compounds and aldehydes

Frequencies of detection



Volatile organic compounds and aldehydes



IAQ guideline value 2 μg/m³

IAQ guideline value 30 μg/m³

Compared to dwelllings?

Comparison with IAQ Observatory nationwide study in dwellings (2003-2005)

Concentrations Schools < Dwellings (p-value<0.05)

Except for formaldehyde and PM_{2,5}

Compared to dwelllings?

Comparison with IAQ Observatory nationwide study in dwellings (2003-2005)

SVOCs concentrations

Schools > Dwellings (p<0.05)

Schools ~ Dwellings

Schools < Dwellings (p<0.05)

9	SVOCs	Schools	Dwellings
Musks	НССВ	148	5,7
	HTNA	21,1	2,4
PCBs	PCB28	0,1	0
	PCB31	0,1	0
	PCB52	0,2	0
	PCB101	0,1	0
Phthalates	BBP	<loq< td=""><td>17</td></loq<>	17
	DBP	168	33
	DEP	286	297
	DiBP	790	99

	SVOCs	Schools	Dwellings
cides	α -endosulphan	<loq< th=""><th>0,1</th></loq<>	0,1
sticic	α-НСН	0,2	0,4
Pesti	δ -HCH (lindane)	1,4	0,6

	SVOCs	Schools	Dwellings
4s	Anthracene	0,5	1,4
	Fluoranthene	0,7	2
	Fluorene	7,5	16
	Phenanthrene	11,6	8,3
	Pyrene	<lod< td=""><td>0,8</td></lod<>	0,8

Conclusion

An extensive database about the school environment

Indoor air quality in French schools is quite good

- Most of the schools meet the French formaldehyde and benzene regulatory IAQ guidelines
- French children less exposed at school than at home

4 issues that need further attention

- PM_{2,5}
- Semi-volatile organic compounds in air
- Lead in paint
- Lack of ventilation, air stuffiness

Perspectives

Data analysis still in process...

- Indoor pollution:
 - electromagnetic fields
 - metals and SVOCs in settled dust
 - comfort parameters: thermal comfort, noise, light
- Determinants of indoor pollutants and discomfort
- Cumulative exposure: noise and indoor air pollution

Thank you for your attention!

⇒ French Observatory For Indoor Air Quality (OQAI) is receiving financial support from:

- National Ministries in charge of Construction and Housing, Health, Environment
- French Agency for the Environment and Energy Management (ADEME)
- The French Agency for Food, Environmental and Occupational Health & Safety (Anses)

⇒ Thanks to:

- Field technicians
- Building owners and school directors
- Teachers and pupils

